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Abstract 
Background.   Despite improvements in our understanding of glioblastoma pathophysiology, there have been no 
major improvements in treatment in recent years. Animal models are a vital tool for investigating cancer biology 
and its treatment, but have known limitations. There have been advances in glioblastoma modeling techniques in 
this century although it is unclear to what extent they have been adopted.
Methods.   We searched Pubmed and EMBASE using terms designed to identify all publications reporting an an-
imal glioma experiment, using a machine learning algorithm to assist with screening. We reviewed the full text of 
a sample of 1000 articles and then used the findings to inform a screen of all included abstracts to appraise the 
modeling applications across the entire dataset.
Results.   The search identified 26 201 publications of which 13 783 were included at screening. The automated 
screening had high sensitivity but limited specificity. We observed a dominance of traditional cell line paradigms 
and the emergence of advanced tumor model systems eclipsed by a large increase in the volume of cell line experi-
ments. Few studies used more than 1 model in vivo and most publications did not verify critical genetic features.
Conclusions.   Advanced models have clear advantages in terms of tumor and disease recapitulation and have 
largely not replaced traditional cell lines which have a number of critical deficiencies that limit their viability in 
modern animal research. The judicious use of advanced models or more relevant cell lines might improve the 
translational relevance of future animal glioblastoma experimentation.

Key Points

•	 Animal glioma studies are used frequently, although traditional paradigms have limited 
construct validity.

•	 Better tumor models are available, but their uptake has been very limited.

•	 Improvements in modeling should improve the relevance of animal glioma research.

Glioblastoma is an aggressive primary brain tumor with a 
prognosis among the worst across all cancer types. Despite 
significant investment into the improvement of surgical and 
oncological therapies, and fundamental change in our under-
standing of glioma genetics and cell biology, there have been 
no major developments in treatment in the last 2 decades.1–6

Animal modeling of cancer has been a mainstay of drug de-
velopment for half a century, and these studies often inform 
clinical trials. However, the translation of research from lab 
to clinic is known to be particularly inefficient, and the design 
and conduct of animal studies contribute. In cancer research, 
over 90% of drugs apparently effective in vivo are ineffective 
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in human phases, and there is compelling evidence sug-
gesting that the construct validity, design, and conduct of 
the preclinical study have a contributory role.7–11

The most commonly published glioblastoma paradigms 
use immortalized cell lines derived from animal or human 
tumors induced in the 1960s and 1970s.12–16 Concerns 
have been raised as to these models’ validity, given a lack 
of precise disease recapitulation17 and a poor correlation 
between xenograft cell line use in vivo and clinical out-
comes.11 In previous preclinical glioma meta-analyses, we 
have observed that tumor model selection often accounts 
for substantial between-study heterogeneity.14,15,18,19 If data 
obtained using these paradigms are neither valid nor re-
producible, serious questions arise as to whether they are 
more harmful than informative overall.

Other model types have been described with advan-
tages: with an ability to recapitulate key molecular, genetic, 
and microenvironment features and address the common 
issue of immunocompromised hosts.20–22 Similarly, newer 
cell line models have been reported that more closely re-
semble human disease and have a clearer delineation of 
key clinicopathological characteristics.23 However, it is un-
clear to what degree these models have been adopted.

Systematic review is a tool to conduct a thorough and 
unbiased appraisal of all evidence pertaining to a particular 
research question. The recent addition of machine learning 
tools in systematic review procedures has allowed the in-
clusion of larger volumes of studies, previously not possible 
with manual techniques.24,25 We, therefore, aimed to use this 
technique to summarize preclinical glioma modeling prac-
tices without restrictions or bias, with a particular focus on 
whether a change has occurred during the last 20 years.

Materials and Methods

The protocol for this study was published on March 8, 
2022.26

Search Strategy

We searched Pubmed and Embase on February 28, 2022, and 
updated on November 18, 2023, using the following terms:

(Glioblastoma OR glioma OR astrocytoma OR gliosarcoma 
OR brain tumor)

AND
(In vivo OR orthotopic OR heterotopic)

Searches were limited to animals.

Study Selection

We aimed to include all studies that had tested any glioma 
model in an animal, regardless of the focus or outcomes 
tested. As such, our inclusion criteria were broad:

1)	 Original research article—all publication types 
considered

2)	 Any animal model
3)	 Any glial tumor: glioblastoma, glioma, astrocytoma, 

oligodendroglioma, low-grade glioma, diffuse midline 
glioma, and other pediatric glial tumors

4)	 Any study focus, treatment, or outcome
5)	 No comparator or control required

We excluded non-glial tumors (eg, medulloblastoma, pi-
tuitary adenoma, metastases, ependymoma, etc.), or tu-
mors due to a germline mutation (eg, neurofibromatosis). 
There were no limitations on the date of publication or lan-
guage. The vast majority (>99%) were published in English, 
with the remainder in Chinese, generally with abstracts in 
English. Where required to aid screening decisions, key in-
formation was translated using Google Translate.

The primary search returned 23 959 unique publications, 
of which 1000 were selected at random in Excel for manual 
screening. Two investigators (T.H./D.B.) independently 
screened the titles, abstracts, and full texts where neces-
sary. Disagreements were resolved by direct discussion. 
Binary classification (include or exclude) screening deci-
sions were then used alongside the title and abstract text to 
train a machine learning algorithm based at the EPPI center 
at University College London for automated screening. 
The algorithm uses a tri-gram “bag-of-words” model for 
feature selection and implements a linear support vector 
machine with stochastic gradient descent.27 This algorithm 
was used only to aid study screening and not with data ex-
traction later in the study.

Of the 1000 publications, 463 were labeled as included 
and 537 were labeled as excluded through screening. Eight 
hundred (80%) labeled publications were used to train the 
algorithm and 200 (20%) were retained for performance 

Importance of the Study

Our understanding of glioma biology has improved rad-
ically in the last 2 decades, although this has not led to 
a major improvement in outcomes. Animal research is 
a vital part of the bench-to-bedside process, and many 
candidate therapies are tested in animals before appli-
cation to clinical trials. There are a range of tools avail-
able to model glioma in animals, although traditional 
models have significant limitations in disease recapit-
ulation and reproducibility; newer models have clear 

advantages in terms of precise disease recapitulation in 
the molecular age. However, we show that despite their 
appearance in recent publications, there has been a 
corresponding marked increase in the use of traditional 
models, meaning that the vast majority of studies con-
tinue to model glioma poorly. We offer some practical 
suggestions that should improve the validity and repro-
ducibility of future animal glioma research.
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validation. We applied a threshold score of 0.56, which 
indicated the automated screening had a 96.88% sensi-
tivity (recall), 76.92% specificity, 79.49% positive predictive 
value (precision), and 87.33 F1 score (see Supplementary 
Materail 1).

After training, we submitted the initial search of 23 959 
publications for the automated screening process, with 
12 850 publications subsequently labeled as included.

Publication Sample Full-Text Review

Next, we divided publications into 5 groups, according to 
date of publication (pre-2001, 2001–2005, 2006–2010, 2011–
2015, 2016-present), and randomly selected 200 from each 
group to give a working cohort of 1000 articles for manual 
full-text review.

For each article, we extracted bibliographic data (year, 
authors, journal); data pertaining to the host animal (spe-
cies and immune status); the tumor model (site of tumor, 
tumor model category, cell type, number of models used 
per article); whether there was genetic confirmation of cell 
type or key molecular features relevant to clinical practice 
(eg, IDH, MGMT, EGFR, TERT, PTEN, p53, ATRX, 1p/19q, 
H3.3 histone mutations, CDKN2A/B); and the overall focus 
of the study.

We categorized tumors into “cell line,” “PDX,” “GEMM/
oncomice,” “induced tumors,” and “other.” Cell lines were 
defined as any transplantable cells that have been main-
tained in culture or neurospheres in vitro; “PDX,” patient-
derived tumors that were processed and implanted in vivo 
directly, or maintained in vivo until their use. We encoun-
tered instances where tumors were described as “patient-
derived” but had been maintained in in vitro culture—these 
were assigned to the “cell line” category. Cells described as 
U373 were included in the U251 group because of a well-
known contamination issue.28,29 GEMM/oncomice were any 
animals with a genetic construct that leads individuals to 
develop tumors spontaneously or after induction of a non-
carcinogenic agent. Induced tumors were defined as those 
whose development was caused by the delivery of a carcin-
ogen or other agent in otherwise healthy animals.

The review was conducted in accordance with PRISMA 
guidlines (Supplemetary Materail 4). Data were extracted 
using the SyRF online platform, available at https://syrf.
org.uk.30

Full Dataset Abstract Review

In November 2023, we updated the search and, after sub-
mitting the additional 1208 studies, automatic screening 
decisions identified a further 921 studies for inclusion. 
Finally, during the publication review process, a further 
12 relevant GEMM studies were highlighted to us that 
had not been included in the search, which we included 
at this stage. As such, the total dataset included 13 783 
publications.

We categorized each abstract if it included one of the 
critical terms pertaining to each of the study design fea-
tures identified during the first stage, as described in 
Supplementary Material 3. This process was completed 
using Microsoft Excel.

Systematic searches were saved via the export functions 
in each search website and imported into Endnote X9, for 
further management. Abstract search functions were per-
formed in Microsoft Excel, and Statistical Analyses were 
performed using PASW Statistics 18. For the first dataset, 
the cutoff P-value was Bonferroni adjusted to P = .004 (11 
comparisons), and for the second, P = .025 (2 comparisons).

Results

In total, our searches identified 25 168 unique publica-
tions (23 959 at primary search and 1209 further at update). 
During the manual screening process, we included 463 and 
excluded 537, and the machine learning algorithm identi-
fied a further 12 387, leaving 12 850 included after the first 
search and 933 more after the update, leading to a total of 
13 783 included studies (Figure 1). Of these, 150 were con-
ference abstracts, and the remainder were journal articles.

The yearly volume of studies included increased sub-
stantially over time, with an average of 5.4 publications/
year between 1975 and 1980 rising to a peak of 1143/year 
in 2020–2021. In 2022 and 2023, there were 1051 included 
articles, equivalent to 560/year (Figure 2).

Full-Text Review

We selected 1000 studies to represent the full range of dates 
over which preclinical glioma research has been published. 
We excluded 285 articles, leaving 715 for a full review. Of 
those excluded, 91 did not use a glioma model, 90 reported 
glioma in vitro only, the model was unclear in 40, 30 were 
reviews, 24 clinical studies, 4 retracted, 2 technical notes, 2 
neurofibromatosis studies, and we were unable to retrieve 2 
manuscripts. A greater proportion of older studies were ex-
cluded (39.7% published before 2001 compared with 24.4% 
2016–2022). To ensure a more even distribution across 
groups, and to allow a better representation of current prac-
tices in the most recent group, we recategorized studies 
into those up to and including 1998, 1999–2002, 2003–2006, 
2007–2010, 2011–2014, 2015–2018, and 2019–2022. Raw data 
are available in Supplementary Material 2.

Animal Hosts

Across the 715 publications, we identified 983 models, 
a mean of 1.37 per study (range 1–25). There was a trend 
for the number of models to increase with time, with the 
earliest articles reporting a mean of 1.19 publications, 
rising to a peak mean of 1.50 in 2015–2018 (Figure 3A). 
The majority (682/983, 69.4%) used mice, with 296 (30.1%) 
using rats, 3 dogs and 1 each of hamsters and zebrafish. 
Most animals had immune dysfunction, with almost half of 
all models using athymic animals (486/983, 49.4%). We also 
observed the use of animals severe combined immune 
deficient (SCID) animals (78, 7.9%), BDIX mice (11, 1.1%), 
and NOD-SCID gamma (7, 0.71%). Only 1 model reported 
the use of animals with a humanized immune system. 
Immunocompetent animals were used in 367 (37.3%) 
models. Rats were favored in earlier studies although there 
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was a clear move toward mice (Figure 3B; χ2 = 188, df = 12, 
P < .001) and athymic and SCID (Figure 3C; χ2 = 138, df = 42, 
P < .001) animals with time.

Overall, the majority of models used orthotopic tumor 
implantation (661/983, 67.2%). All but one of the remainder 
used subcutaneous tumors. In the earliest group, subcu-
taneous tumors were used in 42.6% of models, and there 
was a trend for orthotopic models to be favored over time, 
described in 73.9% of those published in 2019–2022 (Figure 
3D; χ2 = 18.3, df = 6, P = .006).

Glioma Paradigms

The vast majority of publications (641/715, 89.7%; 799/983 
models, 81.3%) used xenograft or syngenic cell lines. PDXs 
were the main model reported in 46 publications (6.4%) 
and used in 137 models (13.9%). GEMMs were described 
in 14 (2.0%) and induced tumors 13 (1.9%) of publica-
tions. Almost all (699/715, 97.8%) used 1 model type, with 
15 describing the use of both cell lines and PDXs, and 1 
using cell lines and a GEMM. Cell lines were the prominent 
paradigm throughout, although PDX and GEMM models 
were used in a minority of recent publications (Figure 4A; 
χ2 = 51.6, df = 24, P = .001).

We observed the inoculation of 110 different cell lines in 
vivo, although 1 of 10 lines was used in 631/799 models 
(79.0%). The most frequently described was U87 (210/799 

cell line models, 26.3%), then C6 (149/799, 18.6%), 9L (80/799, 
10.0%), U251 (70/799, 8.76%), and GL261 (43/799, 5.38%). 
There was a clear trend for syngenic rat models C6 and 9L 
to be favored in earlier studies, replaced by U87 and GL261 
more recently. U87 was used in 47.6% of all models during 
the 2015–2018 period and is by far the most frequently used 
model currently (Figure 4B). The commonly described cell 
lines were generally acquired from commercial sources and 
were developed between 1968 (U87, C6) and 1994 (CNS-1).

Studies that primarily used cell lines used a single cell 
line in vivo in 80.7% of cases (517/641 publications): 98 
used 2 cell lines (15.28%) and 26 (4.06%) used 3 or more. 
One publication used 6 lines. The was no change in the 
number of tumor models used over time, with the majority 
(73.5%) of publications from 2019 to 2022 only using 1 line 
in vivo (Figure 4C, common cell lines summarized in Table 
1; χ2 = 42.7, df = 48, P = .691).

Of the cell line paradigms, the host animal features un-
derstandably differed according to whether xenograft or 
syngenic model design. Selecting studies reporting the use 
of 1 of the 10 most frequently used cell lines (see Table 1), 
xenograft models were transplanted into mice in 291/304 
(95.7%) of cases, with alterations of immune function in 
285/204 (93.8%), mostly athymic (78.6%). As expected, the 
majority (237/327, 72.5%) of syngenic models used animals 
with an intact immune system, although a prominent mi-
nority (74/327, 22.9%) used athymic animals (Figure 4D).

Unique studies after duplicates
removed Feb 2022

(n = 23959)

Algorithm training stage
1000 articles

Included after automated
screening
(n = 12850)

Articles sampled
(n = 1000)Exclusions (n = 285):

No glioma model n = 91
In vitro n = 90
Unclear model n = 40
Review n = 30
Clinical study n = 24
Other n = 10

Additional studies highlighted
during review

(n = 12)

Included after automated
screening
(n = 13783)

Abstract review
(n = 13783)

Full text review
(n = 715)

Search update Nov 2023
(n = 1209)

Stage 1 Stage 2

Figure 1.  PRISMA chart for study inclusion.
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One publication (1.18%) reported the use of PDXs in the 
pre-1998 group, and their use was infrequent until around 
2011. Since then, they have been consistently used in 
around 10% of publications. The median number of PDX 
models per study was 1 (interquartile range 1–3), and 
55.4% of PDX studies used a single model, although some 
publications used many—25 tumors in 1 and between 5 
and 7 in another 5. There was no trend for increasing the 
use of multiple PDX models with time; rather, studies 
using PDXs before 2007 always used more than 1 model, 
whereas 50% (4/8) of 2019–2022 publications using PDXs 
only used a single model. The majority of PDX models 
used mice (124/137, 90.5%), and most of those using rats 
were reported in 1999–2002. Athymic animals were used 
most frequently (77/137, 56.2%), followed by SCID (26/137, 
19.0%). A minority reported the use of immunocompetent 
animals (28/137, 20.4%).

GEMMs were reported in 38/983 models (3.87%), first de-
scribed in a publication from 1998. although mostly repre-
sented between 2010 and 2022. They were all in mice and 
immunocompetent in 37/38 (97.4%). Genetic engineering 
targeted 1 or multiple genes, including Ink4a/ARF, p53, 
CDKN2A, PTEN, ATRX, and EGFR. The animals included 
in experiments all developed intracranial tumors. The pre-
ferred targets did not obviously change over time, with 
Ink4a/ARF reported most frequently in both 2003–2006 and 
2019–2022.

Induced tumors were used in 8 mostly earlier models, with 
the agent most commonly used being ethylnitrosourea. Two 

models used viruses (eg, avian sarcoma virus) infusion to 
induce tumors. The models using ethylnitrosourea were all 
historical, 1986–1997, and tumors were induced in both rats 
and mice, athymic or without comorbidity.

Additional In Vitro Modeling

During the data extraction phase, we noticed that many 
publications tested their hypothesis on tumor tissues in 
vitro, in addition to those tested in vivo. As such, we re-
corded if additional tumor models had been tested in vitro 
as we felt this was relevant, particularly when a publica-
tion had only used a single in vivo model. We observed 
this in 144/715 (20.1%) of publications, and this was de-
scribed more frequently with time (34.6% in 2019–2022, 
3.5% in pre-1998; χ2 = 40.0, df = 12, P < .001, see Figure 4C). 
Multiple models were tested in vitro in the majority of in-
stances and there was a range between commercial cell 
lines and primary patient-derived tumor samples.

Study Focus

There was unsurprisingly a wide range of investigations 
and interventions described in the 715 included publi-
cations. We categorized each by its main focus, although 
many publications addressed more than 1.

Treatments were tested in 444/715 publications 
(61.2%), most frequently gene therapies (135/715, 18.9%), 
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chemotherapy/small-molecule therapy (120/715, 16.8%), 
immunotherapies (59/715, 8.3%), and radiation-based 
treatments (53/715, 7.4%). Tumor biology was the main 
focus in 20.4% of publications (148/715), where studies 
focused on gliomagenesis or glioma cell biology (77/715, 
10.5%), tumor–brain interactions (26/715, 4.6%), or tumor 
genetics (25/715, 3.5%). Imaging (mostly advanced MRI 
and PET sequences) was used in 86 publications (12.0%) 
and new models were the main focus of 19 publications 
(2.7%, see Figure 5A).

There were trends for gene therapies to be described less 
frequently with time, with a peak of 31.3% of articles pub-
lished between 2003 and 2006 reducing to 4.9% in 2019–
2022; and small-molecule therapies were represented with 
increasing frequency over time, consistently around 20% 
since 2011. Similarly, tumorigenesis/glioma cell biology 
and glioma genetics were investigated with increasing fre-
quency, representing 13.5% and 9.9% of 2019–2022 studies, 
respectively (χ2 = 165, df = 72, P < .001; Figure 5A).

Unsurprisingly, some tumor model types were favored for 
different study types (χ2 = 91.8, df = 48, P < .001; Figure 5B). 
That is, 52.6% of experiments using GEMMs investigated 
tumorigenesis and glioma cell biology, particularly in a 
tumor’s early stages. We did not observe any GEMM studies 
focusing on tumor genetics—appreciable given the prede-
termined genetic status quo of the tumors—and only 5/19 
publications (26.3%) tested a treatment. PDX models were 
most frequently deployed to investigate glioma cell biology, 
in 10/46 (21.7%), and a greater proportion of PDX models 
were used to investigate tumor–brain interactions than any 
other tumor model types (10.9%)—again unsurprising given 
accurate recapitulation of the brain–tumor microenviron-
ment is one of the main advantages of PDX. Gene therapies, 
imaging, antiangiogenic treatments, advanced delivery 
techniques, and radiation were most frequently investigated 
using cell line models.

Overall, when study focuses were dichotomized into 
“treatment” and “other,” we observed that a greater 
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Figure 3.  Summary of host animals. (A) Mean experiment paradigms per article versus year of publication. (B) Stacked bar chart of host animal 
grouped by year of publication, showing a clear trend for mice to become favored over time; χ2 = 188, df = 12, P < .001. (C) Stacked bar chart of co-
morbidity grouped by year of publication, showing an increase in the use of athymic and severe combined immune deficient (SCID) mice; χ2 = 138, 
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proportion of publications using cell lines tested a treat-
ment (64%) when compared with PDX (47.8%) or GEMM 
(26.3%). Finally, we considered whether investigators 
might take further steps to introduce tumor heterogeneity 
in studies that test a treatment. Overall, the number of arti-
cles using multiple models was less in this group and there 
was no change in this difference with time (χ2 = 2.15, df = 1, 
P = .142; Figure 5C).

Model Verification and Confirmation of Key 
Genetic/Molecular Features

Of the 715 publications, 71 (9.9%) described confirmation 
of relevant genetic or molecular tumor features analogous 
to those of established value in clinical practice. Of these, 
the vast majority focused on a single gene that was of rel-
evance to the study (48/71, 67.6%, mostly EGFR). A further 
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Figure 4.  Summary of tumor paradigms. (A) Frequency of tumor model type over time, showing emergence of PDX model since 2011 but ongoing 
predominance of cell line models; χ2 = 51.6, df = 24, P = .001. (B) Frequency of cell line selection over time, including the 5 most commonly re-
ported lines as a proportion of all cell lines. There was an increasing prevalence of U87 use and decreasing use of C6 and 9L models. (C) Stacked 
bar chart of the number of models used grouped by year of publication, showing no change in the proportion of publications using more than 
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Table 1.  Summary of Common Cell Lines

Model Origin Description Count in 
Sample

Count in Ab-
stract Review

U87 Human 1968 207 2082

C6 Rat 1968 146 1303

9L Rat 1971 79 450

U251 Human 1973 69 850

GL261 Mouse 1970 43 571

F98 Rat 1980 30 179

T98 Human 1979 13 193

RG2 Rat 1980 12 97

BT4C Rat 1974 11 52

CNS-1 Rat 1994 8 15
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10 (14.1%) described 2 genes only. The status of IDH and 
MGMT, vitally informative of clinical glioma management, 
were confirmed in only 6 and 5 publications, respectively. 
There were only 3 publications that verified the identity of 
the cell lines using short tandem repeat analysis. There was 
a nonsignificant trend for genetic features to be described 
more frequently over time, although in 2019–2022, this was 
only 17.3% of publications (χ2 = 12.2, df = 6, P = .058; Figure 
5D). Similarly, description of key molecular features was 
more frequently reported for PDX models (41.3%, 19/46) 
and GEMM (42.1%, 8/19) than for cell lines (7.17%, 46/641; 
χ2 = 77.1, df = 4, P < .001; Figure 5E).

Abstract Screen

To provide an estimate of the representation of model 
types reported in all identified literature, we searched the 
abstracts of each of the 13 783 included studies for terms 
pertaining to the different tumor model types, as high-
lighted in the methods. Overall, we found that at least one 
of our terms used was included in 8189/13 783 (59.4%) of 

abstracts, compared with 519/715 (72.6%) of the publica-
tions subjected to full-text review. Of the 519, the model 
indicated was the same as that identified on full-text data 
extraction in 494/519 (95.1%) of instances. While inappro-
priate to infer the absolute number of publications using 
each paradigm (because of the limited specificity of the au-
tomated screening and abstract term searches), we felt it 
justifiable to use this approach to analyze the relative rep-
resentation of each model type, as the limitations above 
appeared to apply to each subset equally.

Of the 8189 abstracts, cell lines were by far the most 
commonly reported model type, with these terms included 
in 7497 (91.5%), compared with 494/519 (95.1%) of the 
sample. PDX terms were included in 637/8189 (7.7%) and 
18/519 (3.5%); GEMMs in 519/8189 (6.3%) and 37/519 (7.1%); 
and induced tumors 162/8189 (1.9%) and 20/519 (3.9%) of 
the whole dataset and sample, respectively. Using this 
technique, the observed distributions of the different 
model types changed over time in a manner comparable 
to that observed in the primary dataset (χ2 = 304, df = 18, 
P < .001; Figure 6A and C).
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9Hirst et al.: Systematic review of preclinical glioma modeling

We observed that, of the cell lines, U87 was mentioned in 
2082 abstracts and C6 1303. U87 remains the predominant 
model in modern literature, included in 27.8% (1396/5009) 
of abstracts published in the last 10 years, compared with 
11.1% (556) PDX and 6.5% (324) GEMM (see Figure 6B and 
D). Of the abstracts naming cell lines, 71.5% (3654/5105) 
described 1 of the 20 most commonly used lines, 23.6% 
(1205) 2 lines, and 4.8% (246) 3 or more. Multiple cell lines 
were mentioned with increasing frequency over time, 
rising from 11.9% (46/386) in pre-1998 to 51.7% (156/302) in 
2022–2023 (χ2 = 310, df = 6, P < 0.001; Figure 6E), although 
we were unable to differentiate between their use in vivo 
and in vitro.

Discussion

Principal Findings

In this review, we have summarized the practices of an-
imal glioblastoma modeling since their first application in 
the 1960s and described how glioma has been modeled in 
animals since. Newer cell lines, PDX and GEMM models, 
offer clear recapitulation advantages, but their adoption 
has been somewhat muted as flawed cell lines continue 

to dominate the preclinical glioma literature. While tradi-
tional cell lines clearly have advantages—easy to acquire 
and generate tumors, with established experience of their 
biology and behavior, and available in large numbers—we 
express concerns about the way in which they are being 
applied and the relevance of data obtained from testing 
them. There remains a proclivity to use a single cell line in 
vivo, usually without any confirmation of tumor identity 
or relevant genetic features, and those cell lines that are 
favored have major limitations which might not exist for 
newer alternatives.

Validity of Methodological Approach

We adopted a simple and broad search strategy and inclu-
sion/exclusion criteria to maximize the sensitivity of the 
search We used an automated screening process, which 
allowed us to generate a dataset that includes almost all 
studies reporting the use of an animal glioma model, rather 
than having to narrow the search question or use samples 
of a search because of limitations of human resource. While 
the specificity of the process was limited, at 72%, we have 
confidence that almost all relevant studies are captured.

While we are confident in the validity of our systematic 
review, we acknowledge the possibility of omission of 
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publications not including our search terms in their title or 
abstract. During the publication review process, a number 
of GEMM studies were highlighted to us that were not 
included in our search—this is likely a result of a search 
strategy that we adopted leading to the underrepresenta-
tion of this type of experiment. This, of course, reflects a 
weakness in this review, but we believe that the overall va-
lidity has been maintained, as firstly, this experiment type 
forms a small subset of the dataset (in our study and other 
published reviews), and secondly, we included these pub-
lications in the secondary abstract analyses. We did not 
change the literature search or main analysis as these had 
already been prespecified in our protocol.

We chose a sample of 1000 studies, anticipating that around 
a quarter of them would be excluded. While the volume of 
publications has increased dramatically over time, we chose 
to include publications distributed evenly over time. As such, 
the older literature is relatively overrepresented—the main 
focus of this review was to appraise how glioma modeling 
has changed over time. To address the underrepresentation 
of modern data, we developed a technique to identify and 
categorize studies by the screening of abstract text in Excel, 
validating this against the 1000-study sample. While sensi-
tivity was limited, as many publications do not include mod-
eling specifics in the abstract text, the screen resulted in the 
correct categorization of abstracts in 95% of instances—as 
such allowing for the reliable description of trends in prac-
tices within the entire dataset, including those published as 
recently as November 2023.

We did not extract data from all excluded publications 
as this was not feasible manually. Future developments 
in language processing algorithms should facilitate more 
complete data extraction from large datasets,24 although 
we have not yet validated this approach.

During full-text review, we extracted a limited number of 
features, in particular with respect to study design, aims, 
and focus. We designed the study in this way as questions 
pertaining to specific treatments were beyond the scope of 
this review. That being said, practices of animal modeling 
may differ according to the specific focus—it is known that 
some interventions require certain experimental conditions, 
which may not have been appreciated in this analysis.17 We 
have not captured the design of the study, which also may 
be relevant: those studies with a focus on drug discovery, 
basic cell biology, or the first in vivo testing of a new agent, 
are more likely to be applied to logistically favorable models, 
such as subcutaneous cell lines, than confirmatory studies 
whose main focus is to directly inform a clinical trial.17

Glioma Model Applications

We observed, in both analyses, a dominance of traditional 
cell lines, often a single line used in isolation. While newer 
paradigms have been used in the last decade and there 
appears to be enthusiasm for them, their introduction has 
been eclipsed by a large parallel increase in the use of tra-
ditional cell lines.

The ongoing dominance of U87 has been particularly sur-
prising: clearly favored because of its availability, familiarity, 
reliable tumor seeding, and range of available subtypes.31 
U87 cells have a number of well-known disadvantages that 

we feel seriously undermine the validity of conclusions 
made when using them in vivo. Specifically, the precise his-
tological diagnosis of the original U87 tumor is unknown. It 
is known to show, as with many other immortalized lines, a 
drift of karyotype over the years. Comparison of commer-
cially available U87 cells with those deep-frozen in Uppsala 
in 1968 has revealed a large discrepancy in genotype and 
mitochondrial DNA, implying the former has either changed 
substantially or originated from a different, unidentifiable, 
source due to contamination32 and commercially available 
cells are more cytogenetically aberrant than other compa-
rable cells.33 U87 tumors barely invade brain parenchyma, a 
cardinal feature of human GBM.34–37

Many of these issues persist for other cell lines—contami-
nation is a known issue for all cells maintained in vitro.28,29,38 
The models we encountered most commonly were all devel-
oped decades ago, following which the diagnostic criteria for 
glioblastoma have changed, critically with the integration of 
key genetic and molecular tumor features.39 While these have 
been inferred or analyzed recently,40–42 it cannot be assumed 
that these features were present in the primary samples 
given the genetic instability known to affect these models.43 
Cell lines typically display low intratumoral heterogeneity, 
unlike human disease.17 The culture conditions have been 
shown to affect the genotype of tumor cells in vitro, and older 
lines predate developments in this area.16,44,45

We observed very few publications validating their 
models—while cell identity is assured by suppliers, mis-
identification remains a major problem for cell lines.38 
Overall, only 10.2% of publications offered validation of the 
cell line or determination of key molecular features (see 
Figure 5D). The Nature Publishing Group now requires STR 
validation of cell lines and this represents the first institu-
tional step to combat this issue.

Xenograft cell lines have become favored over syngenic 
models, with U87 replacing C6 as the model of choice in 
most experiments; the latter was initially favored because 
of its favorable growth, histology, and genotype.46 While 
advantageous in terms of cellular disease recapitulation, 
the requirement for the use of immunocompromised an-
imals renders xenograft cells limited for the study of 
brain–tumor interactions and immune-based treatments. 
Many other syngenic lines lack the histological features of 
GBM.47 The GL261 model has become the model of choice 
for immunocompetent experiments, presumably for lo-
gistical reasons, although there are still difficulties when 
testing human immune interventions on mice without a 
humanized immune system.16,48

We anecdotally noted that recent articles published in 
influential or reputable journals were more likely to use 
advanced models—and, conversely, those reporting tra-
ditional cell lines only were often in low-impact journals. 
Unfortunately, we were unable to quantify this by, for ex-
ample, correlation with journal impact factor as we were 
unable to automate the extraction of this data.

We were surprised to see that, despite much attention 
in recent cancer literature, the uptake of PDX models has 
been somewhat muted, with only around 10% of modern 
experiments using them. However, this is comparable to 
other cancer areas.49 These models have advantages, in-
cluding the preservation of tumor microenvironment, 
better recapitulation of tumor growth, heterogeneity, and 
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11Hirst et al.: Systematic review of preclinical glioma modeling

invasion,50–53 and, critically, a modern correlation with the 
sample donor’s disease—clinicopathological features, 
multiomic analyses, prognosis.17 With current advances in 
understanding cancer biology, novel treatments are often 
tailored to tumors with specific genomic, transcriptomic, or 
metabolomic profiles.21,51,53 Correspondingly, valid models 
should have clear descriptions of these parameters. While 
traditionally laborious to develop, and difficult to exchange 
commercially, PDX procedure standardizations appear to 
have allayed these issues,54–56 but access to fresh tissue re-
mains a limitation. Other problems include the possibility 
for genetic drift (although minimal if passage numbers are 
limited57,58) and an observation that xenograft tumors arise 
from an aggressive subpopulation of cells from the tumor 
specimen.59,60 Another key advantage is the relative ease 
of using tumors from multiple patients in parallel, allowing 
for the introduction of intertumoral heterogeneity. We were 
surprised to see that the majority of recent publications 
(21/33 since 2010, 51.5%) used PDX tumors derived from a 
single specimen.

Similarly, GEMM models have clear advantages given 
the innate tailoring of key genetic features. Tumors 
arising in each individual display heterogeneity, and the 
host’s intact immune system remains advantageous for 
the study of both tumorigenesis and brain–tumor inter-
actions. Despite encountering a description of their use 
in the 1990s, and an apparent acknowledgment of their 
advantages throughout the literature, we were surprised 
to observe limited uptake.

While we did not focus on the specifics of study de-
sign, we extracted basic data pertaining to article focus, 
with a hypothesis that those more likely to inform clinical 
trials—that is, testing treatments—might be more likely to 
model glioblastoma with greater precision. Rather, we ob-
served that those testing a treatment used cell lines more 
frequently. Similarly, there has been no clear trend in the 
way models have been applied according to study focus, 
with single cell lines used in a comparable number of treat-
ments (77.9%) and other (78.7%) studies since 2010.

How Might We Improve?

Ultimately, it appears that the construct validity of much 
of the preclinical glioma literature is poor: most current 
studies still use what we argue are now outdated cell lines 
that lack many key behaviors and features of human gli-
oblastoma, are of uncertain origin and have shifting kar-
yotype and behavior. Many newer cell lines have been 
described that are advantageous in each of these ways, but 
also with a clear characterization of their clinicopathological 
and genomic features at source.17,23,61,62 A shift to the use of 
modern, relevant models—maintained appropriately and 
with transparent characterization—would improve the rel-
evance and reproducibility of future animal research. The 
development of cell line repositories should help in this 
regard.63–65 It is our view that traditional xenograft models 
like U87 should no longer have a place in this field.

Another key concern is the lack of heterogeneity in these 
studies: human glioblastomas are known to have a high 
degree of variability both within a tumor and between in-
dividuals. This is not captured in studies using a single cell 

line in vivo—where genetically identical tumors are tested 
in homogenous host and environmental conditions in a 
fashion known to have poor reproducibility. In our sample, 
517/715 (72.3%) of publications conducted their experi-
ments in this manner and we believe that conclusions 
pertaining to the treatment or biology of glioblastoma in 
general cannot be reliably made from a study of this de-
sign. There has been a tendency for recent experiments to 
include multiple models in vitro, which we would consider 
an improvement but still lack the vital features that in vivo 
modeling provides.

We envisage the optimal preclinical study should adopt 
the structure of the so-called “preclinical trial”—with 
measures to introduce heterogeneity and minimize bias 
in a manner comparable to a clinical trial. That is, using 
high-quality tumor modeling, measures should be taken to 
introduce tumor heterogeneity. Preclinical and co-clinical 
trials have been used to great effect in other cancer areas 
and show great promise in the application of animal re-
search to personalized cancer therapy.49,51 While the use of 
multiple PDX or GEMM constructs is favorable, we accept 
the associated practical challenges, especially for earlier-
stage preclinical experiments. As such, the use of more 
than 1 modern cell line in a justified manner seems a rea-
sonable approach and should yield improvements in the 
validity and reproducibility of results.66,67

Conclusions

We have demonstrated that the volume of preclinical ex-
perimentation has increased dramatically in recent years. 
While advanced models are described and available for 
recapitulation of glioblastoma in animals, the majority of 
publications model glioblastoma poorly in vivo. The re-
sultant output therefore inevitably has severe limitations 
with validity and reproducibility. We have provided some 
practical suggestions that should improve future rodent 
modeling and would support the withdrawal of the older 
glioma xenograft lines.
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Supplementary material is available online at Neuro-
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