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Abstract
Background  Accurately determining the sample size (“N”) of a dataset is a key consideration for experimental 
design. Misidentification of sample size can lead to pseudoreplication, a process of artificially inflating the number 
of experimental replicates which systematically underestimates variability, overestimates effect sizes and invalidates 
statistical tests performed on the data. While many journals have adopted stringent requirements with regard to 
statistical reporting over the last decade, it remains unknown whether such efforts have had a meaningful impact on 
statistical rigour.

Methods  Here, we evaluated the prevalence of this type of statistical error among neuroscience studies involving 
animal models of Fragile-X Syndrome (FXS) and those using animal models of neurological disorders at large 
published between 2001 and 2024.

Results  We found that pseudoreplication was present in the majority of publication, increasing over time despite 
marked improvements in statistical reporting over the last decade. This trend generalised beyond the FXS literature to 
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Background
The choice of what constitutes the sample size is a fun-
damental challenge for experimental design, forming 
the basis of statistical inference [1]. While ostensibly a 
simple decision, identifying independent replicates can 
be a complex task in modern neuroscience datasets. For 
example, a typical experiment will typically yield a large 
number of cells per individual animal, cells which them-
selves are organised in groups by cell type, with data 
collected frequently spanning multiple days or multiple 
brain areas. What constitutes independent replicates 
in this instance can be unclear; is it animals, cells, brain 
areas, experimental days or entire litters? A misidenti-
fication of sample size can lead to pseudoreplication, a 
form of statistical error which has long been identified 
as a critical flaw in statistical analysis [2, 3]. Pseudorep-
lication systematically inflates sample size (or “N”) and 
overstates the power of the experiment by assuming 
independence in samples which are not independent; for 
example, cells from the same animal. This often leads to 
an overestimation of effect size and invalidate statistical 
tests performed on the data by increasing the likelihood 
of observing false positive results [2, 4]. An abundance of 
false positive results in the published literature is thought 
to drive a general lack of reproducibility in the field [5, 6], 
with pseudoreplication being a major driver [7–10].

To combat the reproducibility crisis and promote 
transparency and credibility in science, scientific jour-
nals have put more stringent requirements in place for 
the reporting of statistical details [11, 12]. Intuitively, bet-
ter reporting of statistical details ought to aid editors and 
reviewers in catching major statistical flaws in articles 
prior to publication, and promote the statistical rigour 
of submitted and published manuscripts [13, 14]. While 
such measures have been commonplace for more than 
a decade, it is unclear what impact these measures have 
had on statistical rigour.

Here, we sought to determine whether improved statis-
tical reporting has led to greater statistical rigour in arti-
cles using rodent models of neurological disorders (ND), 
focusing on pseudoreplication as well-known and com-
mon form of statistical error. We reviewed a total of 650 
publications using rodent models of neurological disor-
ders between 2001 and 2024, scoring for the presence of 
pseudoreplication and adequacy of statistical reporting. 
We found that pseudoreplication has remained a preva-
lent issue in the literature over the past two decades, 
present in the majority of publications, despite marked 
improvement in statistical reporting. We discuss how 
pseudoreplication affects the false discovery rate of the 
most common types of statistical testing, and offer sug-
gestions for how this may be improved.

Methods
Article selection & scoring
For the FXS study cohort, a Pubmed search was per-
formed using the gene of interest (fmr1) and the species 
(mouse) as keywords. Results were limited to articles 
published in 2001–2012 and 2013–2024. We divided 
articles into two groups; those published prior to the 
publication of Nature’s reporting guidelines in 2012 
(2001–2012) [13], which highlighted the issue of pseu-
doreplication and called for better reporting, and those 
published after (2013–2024).

For the ND search, the following pubmed search string 
was used:

(mice[Title/Abstract] OR mouse [Title/Abstract]) 
AND (model|Title/Abstract] OR transgenic|Title/
Abstract] OR knockout[Title/Abstract]) AND (“The 
Journal of neuroscience: the official journal of the Soci-
ety for Neuroscience“[Journal] OR “Neuron” [Journal] 
OR “Nature neuroscience“[Journal] OR “The Journal of 
physiology” [Journal] OR “Journal of neurophysiology” 
[Journal])

rodent studies of neurological disorders at large between 2012 and 2024, suggesting that pseudoreplication remains 
a widespread issue in the literature.

Limitations  The scope of this study was limited to rodent-model studies of neurological disorders which had the 
potential for being pseudoreplicated, by allowing repeat observations from individual animals. We did not consider 
reviews or articles whose experimental design could not allow for pseudoreplication, for example studies which 
reported only behavioural results, or studies which did not use inferential statistics.

Conclusions  These observations identify an urgent need for better standards in experimental design and increased 
vigilance for this type of error during peer review. While reporting standards have significantly improved over the past 
two decades, this alone has not been enough to curb the prevalence of pseudoreplication. We offer suggestions for 
how this can be remedied as well as quantifying the severity of this particular type of statistical error. Although the 
examined literature concerns a specific neuroscience-related area of research, the implications of pseudoreplication 
apply to all fields of empirical research.
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Reviews and articles that were not neuroscience-
related were excluded, along with articles that were 
purely behavioural, or which did not, by design, permit 
repeat-sampling from animal units. Articles with no 
inferential statistical analyses were also excluded. Articles 
were sampled in random order until the desirable total 
number of articles was reached (350 for the FXS litera-
ture and 300 for the ND literature).

The results and methods for each article were con-
sulted to assess whether pseudoreplication was evident 
in at least one figure, and whether adequate statistical 
details were reported to unequivocally determine this 
to be the case. An article was considered to contain ade-
quate statistical details if the degrees of freedom for each 
test performed were explicitly stated, the unit of replica-
tion was clearly defined and the statistical tests applied 
were clearly stated. If adequate statistical details were not 
reported and there was no obvious evidence of pseudo-
replication that could be inferred from the figure legend 

or main text, articles were given the benefit of the doubt 
and assumed not to have committed pseudoreplication.

All articles were assessed by two independent scorers 
for each category, who were blind to each other’s assess-
ment. Where discrepancies occurred, these were dis-
cussed between all authors to reach a consensus. Where 
consensus could not be reached, articles were excluded 
from further analysis and another article was randomly 
drawn from the literature. This applied to a total of 4 
articles.

Data analysis
All data was analysed using custom scripts written in 
Python v3.11. Jupyter notebooks showing all analysis 
steps can be found at ​h​t​t​p​​s​:​/​​/​d​o​i​​.​o​​r​g​/​​1​0​.​​5​2​8​1​​/​z​​e​n​o​d​o​.​1​3​
8​8​2​1​7​8.

Confidence interval estimates (95% CI) of article scores 
for each year (e.g. Figure  1A) were calculated by boot-
strap resampling article scores for pseudoreplication and 

Fig. 1  The prevalence of pseudoreplication in the Fragile-X mouse model literature has remained fairly constant despite marked improvements in 
statistical reporting. (A) Proportion of articles suspected of pseudoreplication in at least one figure (orange line), and proportion reporting adequate 
statistical details (green line) in articles sampled between 2001 and 2024. Each time-point shows the bootstrap resampled median and 95% percentile 
interval of the bootstrapped distribution. (B) Average percentage of articles suspected of pseudoreplication between 2001–2012 and 2013–2024. Whis-
ker plots show median ± 95% CI of bootstrapped distribution per group. (C) Average percentage of articles reporting adequate statistical details between 
2001–2012 and 2013–2024. (D) Probability of an article being suspected of pseudoreplication when reporting adequate (dark green) or inadequate (light 
green) statistical details between 2001–2012 and 2013–2024. (E) Median citation rate for articles where pseudoreplication was present (dark orange) or 
absent (light orange) between 2001–2012 and 2013–2024. (F) Median citation rate for articles reporting adequate (dark green) or inadequate (light green) 
statistical details between 2001–2012 and 2013–2024
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statistical reporting at each year point. In each bootstrap 
replicate, articles were resampled 100 times with replace-
ment, and the number of articles suspected of pseudo-
replication constituted the bootstrap sample. The process 
was repeated 10,000 times, and the final distribution was 
visually inspected to determine whether the bootstrap 
had converged (i.e. differences were normally distributed 
as per the central limit theorem [15]). Bootstraps that 
had not converged were repeated with 100,000 replicates. 
Confidence intervals were drawn using the percentile 
method [16], whereby the 2.5th and 97.5th percentiles of 
the bootstrapped distribution constituted the 95% con-
fidence interval. The median of the bootstrapped distri-
bution was used as the average number of articles which 
were suspected of pseudoreplication. This process was 
repeated to estimate confidence intervals for the number 
of articles which reported adequate statistical details.

For between-group comparisons (e.g. Figure  1B), 
effect size and significance were estimated by bootstrap-
ping median differences between groups [17, 18]. In 
each bootstrap replicate, articles from each group were 
resampled 100 times with replacement, and counts of 
scores were subtracted between groups. This proce-
dure was repeated 10,000 times to yield a distribution 
of differences. The distribution was visually inspected 
to determine whether the bootstrap had converged, and 
bootstraps that had not converged were repeated with 
100,000 replicates. Confidence intervals were drawn 
using the percentile method [16] and were used to deter-
mine whether differences between groups were signifi-
cant (i.e. whether or not the 95% CI overlapped zero) 
[18]. The median of the distribution (Mdiff) was reported 
as the effect size. P-values were derived from the 95% CI 
as described by [19].

To estimate the probability of pseudoreplication given 
adequate or inadequate statistical reporting (e.g. Fig-
ure  1D), articles were randomly resampled 100 times 
with replacement for each level of statistical reporting 
(i.e. adequate and inadequate). For each level of report-
ing, the number of articles suspected of pseudoreplica-
tion per 100 article samples constituted the probability of 
pseudoreplication for that level of reporting. The process 
was repeated 10,000 times to yield a distribution of prob-
abilities, where the 95% percentile interval was used as 
the 95% CI and the median as the average probability per 
level of reporting.

Results
How prevalent is pseudoreplication in rodent model 
studies of neurological disorders? To address this ques-
tion, we first examined articles published between 2001 
and 2024 which utilised mouse models of FXS. FXS is 
of particular interest to our own research programme 
and, as one of the most extensively studied monogenic 

neurological disorders, we anticipated that findings 
would be representative of the wider literature. In total, 
we identified 345 articles (150 between 2001 and 2012 
and 195 between 2013 and 2024) which reported a quan-
titative measurement prone to pseudoreplication, such as 
a biochemical, physiological or anatomical assay. For each 
article, we assessed whether pseudoreplication was sus-
pected in at least one figure, and whether adequate sta-
tistical details were reported in the text to unequivocally 
determine its presence. We found that pseudoreplication 
was a widespread phenomenon in the FXS literature, with 
the majority of publications suspected of committing this 
type of error in at least one figure (Fig. 1). Interestingly, 
the proportion of articles suspected of pseudoreplication 
showed a slight increase over time despite the dramatic 
increase in adequate statistical reporting observed after 
2012 (Fig.  1A). In the period between 2001 and 2012 
and 2013–2024, the proportion of articles suspected of 
pseudoreplication increased by roughly 14% (Fig.  1B; 
Mdiff = 14.0 [1.0 28.0] 95% CI, p = 0.0418), while the pro-
portion of articles reporting adequate statistical details 
increased by 53% (Fig. 1C, Mdiff = 53.0 [41.0 65.0] 95% CI, 
p = 5.83e− 17). Overall, these results suggest that pseudo-
replication remains a widespread phenomenon despite 
efforts by the community to improve the standard of sta-
tistical reporting in the FXS literature.

Improved statistical reporting is often seen as a pana-
cea for reproducible science [13, 20–24]. The majority 
of mainstream journals now enforce statistical report-
ing guidelines (such as [11]) as a means of promoting the 
statistical rigour and reproducibility of their published 
articles. As we found that pseudoreplication remained 
prevalent in spite of marked improvements in statisti-
cal reporting over the past two decades, we questioned 
whether articles reporting adequate statistical details 
were indeed less prone to pseudoreplication. We calcu-
lated the probability of suspecting pseudoreplication 
in articles that reported adequate or inadequate sta-
tistical details published between 2001 and 2012 and 
2013–2024 (Fig.  1D). We found that between 2001 
and 2012, when adequate statistical reporting was not 
commonplace, articles which did report adequate sta-
tistical details were considerably less likely to pseu-
doreplicate (P(pseudoreplication | reportingadequate) 
- P(pseudoreplication | reportinginadequate); Mdiff = 0.45 
[0.32 0.56] 95% CI, p = 8.94e− 13). However, between 
2013 and 2024, when adequate statistical reporting 
was more prevalent, articles reporting adequate sta-
tistical details were just as likely to pseudoreplicate 
as those which did not (Mdiff = -0.05 [-0.18 0.09] 95% 
CI, p = 0.741). The probability of pseudoreplication 
amongst articles which reported adequate statistical 
details (i.e. P(pseudoreplication | reportingadequate)) was 
also increased between 2001 and 2012 and 2013–2024 



Page 5 of 10Eleftheriou et al. Molecular Autism           (2025) 16:30 

(Mdiff = 0.53, [0.41 0.64] 95% CI, p = 2.79e− 18). In con-
trast, the probability of pseudoreplication amongst arti-
cles which did not report adequate statistical details 
(i.e. P(pseudoreplication | reportinginadequate)) remained 
roughly the same (Mdiff = 0.03, [-0.11 0.17] 95% CI, 
p = 0.688). Together, the data suggests that improved sta-
tistical reporting does not lead to improved statistical 
practice with respect to pseudoreplication.

We next investigated whether the impact of articles in 
the FXS field was affected by pseudoreplication or the 
adequacy of their statistical reporting. Since the share 
of publications does not necessarily equate to influence 
or impact, we attempted to quantify impact as the yearly 
citation rate of an article as reported by the iCite data-
base [25]. We found no evidence that citation rate was 
affected by pseudoreplication (Figs.  1E and 2001–2012 
Mdiff = -1.44, [-3.75 0.17] 95% CI, p = 0.847; 2013–2024 
Mdiff = -1.04, [-2.39 0.28] 95% CI, p = 0.885) nor adequacy 
of statistical reporting (Figs.  1F and 2001–2012 Mdiff = 
-1.58, [-3.28 0.11] 95% CI, p = 0.823; 2013–2024 Mdiff = 
0.68, [-0.60 2.10] 95% CI, p = 0.329). Therefore, pseudo-
replication and inadequate statistical reporting are not 
issues confined to articles that receive little to no atten-
tion, but rather are widespread across the entire spec-
trum of articles in the FXS literature.

Finally, we sought to determine whether our findings 
generalised beyond the FXS literature to mouse-model 
studies of neurological disorders at large. We exam-
ined articles published between 2001 and 2024 in highly 
respected neuroscience journals (Neuron, Nature Neu-
roscience, Journal of Neurophysiology, Journal of Physi-
ology and Journal of Neuroscience) which used mice as 
models of any neurological disorder (ND). We sampled 
a total of 300 articles (100 between 2001 and 2012 and 
200 between 2013 and 2024) which reported a quan-
titative measurement prone to pseudoreplication, and 
assessed whether pseudoreplication was present in at 
least one figure and whether adequate statistical details 
were reported in text. We found that pseudoreplication 
was present in the majority of ND articles, with its preva-
lence increased between 2001 and 2012 and 2013–2024 
(Fig. 2A; Mdiff = 17.0 [4.0 30.0] 95% CI, p = 0.0104) despite 
a dramatic increase in adequate statistical reporting dur-
ing that time (Fig.  2B; Mdiff = 56.0 [44.0 67.0] 95% CI, 
p = 3.72e− 20). Similar to the FXS literature, between 2001 
and 2012 ND articles which did report adequate statis-
tical details were considerably less likely to pseudorep-
licate than articles which did not (Fig.  2C; Mdiff = 0.39, 
[0.26 0.52] 95% CI, p = 8.37e− 09). This trend did not per-
sist in articles published in 2013–2024, with the prob-
ability of pseudoreplication amongst articles reporting 
adequate statistical details showing an increase (Mdiff = 
0.52 [0.40 0.63] 95% CI, p = 1.12e− 17). Intriguingly, ND 
articles which did not report adequate statistical details 

in 2013–2024 were less likely to be suspected of pseudo-
replication than articles which did (Mdiff = -0.22 [-0.35 
-0.10] 95% CI, p = 0.048). We attribute this finding to the 
relative degree of leniency we applied when assessing 
pseudoreplication in articles which did not report ade-
quate statistical details, as these were generally given the 
benefit of the doubt unless the balance of probability sug-
gested that a figure was pseudoreplicated (for example, 
by showing more data points in a plot than the number of 
animals reported in the methods). Lastly, we found that 
the impact of ND articles, calculated as their annual cita-
tion rate [25], was not affected by the presence of pseu-
doreplication (Figs. 2D and 2001–2012 Mdiff = 3.63 [-1.11 
6.65] 95% CI, p = 0.104; 2013–2024 Mdiff = -0.33 [-2.75 
2.28] 95% CI, p = 0.855) nor by the adequacy of statisti-
cal reporting (Figs. 2E and 2001–2012 Mdiff = 0.92 [-2.11 
3.15] 95% CI, p = 0.505; 2013–2024 Mdiff = 3.51 [-0.93 
6.64] 95% CI, p = 0.158). Overall, our results for ND arti-
cles recapitulate those for FXS, suggesting that the issues 
we identified generalise beyond the FXS literature.

Discussion
Our results demonstrate that pseudoreplication is a 
widespread phenomenon in the FXS and wider ND lit-
erature, featuring in the majority of articles published in 
the past two decades despite improvements in statisti-
cal reporting ushered by the advent of statistical report-
ing guidelines enforced by journals. Far from a fringe 
phenomenon, pseudoreplication is abundant in articles 
published in highly respected neuroscience journals and 
spans the entire spectrum of impact and influence in 
mouse-model studies of neurological disorder. Better sta-
tistical reporting alone has done little to curb its preva-
lence. Rather, the increase in the percentage of articles 
suspected of pseudoreplication we observed is likely due 
to the fact that it is easier to detect when more statistical 
details are provided.

But how much of a problem is pseudoreplication? After 
all, if an error in statistical analysis has little effect on 
the conclusions of a study, or does not affect the overall 
emergence of spurious findings, then perhaps it may not 
harm reproducibility within the field and its prevalence 
may be viewed as rather inconsequential [26, 27].

Let’s consider the following example, which is fairly 
representative of the studies we reviewed here. An 
experiment is designed to determine the effect of delet-
ing a gene on a physiological phenotype measured at 
cellular resolution, with multiple cells recorded per ani-
mal (Fig. 3A). In this instance, individual animals would 
constitute the appropriate sample size (“N”) rather than 
individual cells, as the properties of cells within a given 
animal will inevitably show some correlation with each 
other irrespective of genetic manipulation [28, 29]. 
Treating within-group samples (cells in this case) as 
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independent would therefore underestimate variability 
and constitute pseudoreplication, as sample size would be 
artificially inflated. The disparity in between-animal and 
within-animal variance can be quantified using the intra-
class correlation coefficient [30, 31], or ρIC (Fig. 3A). The 
higher the ρIC, the higher the discrepancy in between-
animal and within-animal variability, meaning multiple 
samples from a small animals will be less representative 
of the wider population (Fig.  3B). As the faithful repre-
sentation of observed variance is a critical consideration 
for the bulk of statistical tests, including ANOVA or the 
Student’s t-test, misrepresentation of variance can be a 
critical error for statistical inference [3, 29, 32].

Classical statistical inference, used in the overwhelm-
ing majority of published articles, assumes a thresh-
old p-value for determining whether an observation is 

“statistically significant”, with values below the threshold 
considered grounds for rejecting the null hypothesis. This 
threshold (ɑ) represents the accepted false positive rate 
and is typically set to 5% or less for a given test. Pseudo-
replication results in artificially low p-values, an effect 
which becomes more prominent the more the replicate 
number is inflated raising the false discovery rate beyond 
the stipulated threshold value [3]. For example, if we were 
to apply the Student’s t-test on a typical dataset com-
prising of 2 groups, with 3 animals per group and 6 cells 
from each animal, assuming that the within-animal and 
between-animal variance is equal (i.e. ρIC = 0.5) the true 
false discovery would be 33% rather than the stipulated 
5% (Fig. 3C). Ostensibly increasing the stringency of our 
test by lowering the p-value threshold would only mod-
estly diminish the effect of pseudoreplication on false 

Fig. 2  The prevalence of pseudoreplication across all publications using animal models of neurological disorder has remained high despite improve-
ments in statistical reporting. (A) Average percentage of articles suspected of pseudoreplication between 2001–2012 and 2013–2024. Whisker plots show 
median ± 95% CI of bootstrapped distribution per group. (B) Average percentage of articles reporting adequate statistical details between 2001–2012 
and 2013–2024. (C) Probability of an article being suspected of pseudoreplication when reporting adequate (dark green) or inadequate (light green) 
statistical details between 2001–2012 and 2013–2024. (D) Median citation rate for articles where pseudoreplication was present (dark orange) or absent 
(light orange) between 2001–2012 and 2013–2024. (E) Median citation rate for articles reporting adequate (dark green) or inadequate (light green) statis-
tical details between 2001–2012 and 2013–2024
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discovery rate (blue and green traces in Fig. 3C), particu-
larly for higher numbers of pseudoreplicates. Increasing 
the number of true replicates (i.e. number of animals) 
would also do little to curb the effect of pseudoreplica-
tion; assuming infinite true replicates, false discovery 
rates would still rise to unacceptable levels as the number 
of pseudoreplicates increases (dotted traces in Fig.  3C). 
This discrepancy between stipulated false discovery 
rate and true false discovery rate dramatically increases 
as the number of pseudoreplicates per true replicate 
rises beyond 10. This can be particularly problematic 
for studies which consider individual synaptic termi-
nals, dendritic spines or cell bodies in counting fields as 

pseudoreplicates can readily inflate sample size by sev-
eral orders of magnitude, rendering inferential statistics 
meaningless [10].

The degree to which pseudoreplication inflates the 
false discovery rate depends on the degree of correlation 
within and between replicates, captured by ρIC [29, 30]. 
The higher the ρIC, the worse the consequences of pseu-
doreplication, as false discovery rates rise beyond the 
stipulated threshold (Fig. 3D).

While all research approaches can suffer from pseu-
doreplication, approaches where replicates from a single 
animal are most possible showed a higher prevalence 
of pseudoreplication (and where pseudoreplication is 

Fig. 3  A typical example of pseudoreplication and its consequences for Student’s t-test. (A) Many experimental designs use within-animal samples to 
draw conclusions about the effect of a gene or environmental condition. The total variability in an effect can be split into a within-animal component (be-
tween cells, in this case) and a between-animal component. The intra-class correlation coefficient, ρIC, is a measure of how these sources of variation are 
related. (B) Schematic of variability relationships between and within animals for low (left population) and high (right population) intra-class correlation. 
Note that animals in the population on the left have high variance between cells (within animal), whereas animals in the population on the right have 
low cell variance in any given animal. (C) Pseudoreplicating by considering within-animal replicates as experimental replicates inflates the true Type-I error 
rate (false positive rate). X indicates the example case given in the text. The curves show how the true Type-I error rate varies with the number of within 
animal replicates for commonly stipulated significance levels (5%, 1%, 0.1%) and for the possible range of between-animal replicates (solid curves = 2 
animals, dotted curves = infinite animals). For all curves, ρIC is set to 0.5. (D) The combined effect of within-animal replicates and intra-class correlation (ρIC) 
on the Type-I error rate for a significance threshold of 5% in the presence of pseudoreplication. Between animal standard deviation is shown normalised 
to within-animal standard deviation for comparison with corresponding values of ρIC
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likely to have the greatest effect on the statistical out-
come). Because measurements form multiple cells is 
most common in anatomical studies, these most com-
monly resulted in pseudoreplication; however, cellular 
physiological measurements were also commonly pseu-
doreplicated. In vivo 2-photon imaging and high-density 
probe electrophysiological recordings were very com-
monly pseudoreplicated (although, to date, the latter are 
rarely encountered in NDD research). Indeed, these types 
of approaches are particularly vulnerable to this type of 
statistical error because they make measurements from 
10s to hundreds of cells. As we note below, measuring 
from multiple cells from individual animals can increase 
the power of the experiment if the within and between 
animal variation is accounted for in a single statical 
approach. Biochemical and transcriptomic data tended to 
fare better by virtue of relying on more complex statisti-
cal tools (such as mixed-effects models).

How can pseudoreplication be avoided? For classical 
null hypothesis significance tests (NHSTs), such as t-tests 
or ANOVAs, the best course of action would most often 
be pooling within-animal replicates to obtain an average 
measurement for each animal; for example, averaging all 
cells recorded from an animal and treating animal means 
as independent replicates [33]. This relatively blunt 
approach, however, is not without its shortcomings. 
Statistical inference on animal averages fails to capture 
within-animal variability and can obscure effects where 
they may be present [34], leading to inflated false nega-
tive rates [35]. A more desirable - albeit more complex - 
approach is to model between and within group factors 
using linear mixed effects models [30], which can model 
variability between and within animals. While such mod-
els are themselves not immune to pseudoreplication [36], 
they allow for the interrogation of complex relation-
ships in data which would otherwise violate the assump-
tions of classical NHSTs [37]. Bayesian inference offers 
another alternative approach to NHSTs, which can be 
used to make valid predictions about biological entities 
even if they are pseudoreplicates [38]. Irrespective of the 
choice of statistic, we encourage authors to interrogate 
complex hierarchical datasets using interactive computa-
tional tools such as “LabAID” [39] as a standard step in 
their statistical analyses, as such exploration is often suf-
ficient to avoid many common statistical errors includ-
ing pseudoreplication [40]. Overall, the most reliable way 
to avoid pseudoreplication is to design experiments that 
yield adequate sample sizes for quantities of interest, as 
no statistical approach can ameliorate an underpowered 
study [5, 9].

Pseudoreplication was identified as an issue nearly 
four decades ago [2], with many articles since highlight-
ing the dangers it engenders for neuroscience as a field 
[3, 7, 9, 41, 42]; why does it remain so pervasive to this 

day? We speculate that part of the issue is an inappropri-
ate emphasis on p-values by authors, reviewers and edi-
tors. The widely held belief that a low p-value indicates 
a “real” result creates a pressure to analyse data in a way 
that generates low p-values and suppress data that do not 
fall under an arbitrary significance threshold [43]. Fur-
thermore, this emphasis on p-values often forces authors 
to adopt NHST approaches where their use is not war-
ranted, for example in observational or preliminary stud-
ies which would otherwise be better served by reporting 
summary statistics. The current culture surrounding sci-
entific publishing offers little scope for such studies to 
be published, as editors and reviewers will often reject 
manuscripts that are not deemed to be “hypothesis-
driven”. This may lead to authors developing post-hoc 
hypotheses (a process known as HARKing) in order to 
carry out NHSTs, a practice which is widely considered 
inappropriate [44]. This is not an issue unique to the use 
of p-values for determining significance; the use of small 
confidence intervals to determine significance would 
be equally problematic. Rather, the emphasis that our 
community places on producing statistically significant 
results therefore leads to a use of statistics that is reduc-
ing the reproducibility of our science and - by extension 
- the integrity of our field [10, 45–49].

It would be rather rash to suggest that large portions 
of the literature in the last twenty years ought to be dis-
carded solely due to the presence of pseudoreplication. 
Studies that have been reproduced multiple times by 
different groups, for example, are likely to be genuine; 
on the other hand, caution is warranted for “one-off” 
observations based on pseudoreplicated data. Conclu-
sions in studies reporting large effect sizes are also likely 
to survive correcting for pseudoreplication, while small 
effect sizes on pseudoreplicated data warrant caution. 
Studies attempting to address phenotypes mechanisti-
cally should certainly not be discounted on the basis of 
pseudoreplication alone. It is important to note that dur-
ing the course of our survey, we observed many instances 
of statistical errors, such as inappropriate use of statisti-
cal tests, and basic errors of interpretation which were 
entirely separate from pseudoreplication. Critical judge-
ment of a paper’s merits is therefore required irrespective 
of the presence or absence of pseudoreplication.

Limitations
The scope of this study was limited to a specific neuro-
science-related area of research; while the implications of 
pseudoreplication apply to all fields of empirical research, 
we did not attempt to quantify the prevalence of pseudo-
replication in articles which did not use animal models 
of neurological disorders. However, our results are con-
sistent with previous work which reported similarly high 
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prevalence of pseudoreplication in neuroscience studies 
at large [3].

Manual scoring of articles for pseudoreplication could 
be a potential source of bias, as the subjective assessment 
of an individual reviewer on the presence of pseudo-
replication could be coloured by their prior belief on its 
prevalence. This could particularly be the case for articles 
which did not report adequate statistical details to defini-
tively determine whether pseudoreplication was pres-
ent. In this study, we took a number of steps to eliminate 
bias. Firstly, all articles were scored independently by two 
reviewers who were blind to each other’s result, which 
highlighted instances where the presence of pseudorepli-
cation was disputed. We also employed a policy of giving 
articles where the presence of pseudoreplication was dis-
puted on account of inadequate statistical reporting the 
“benefit of the doubt”, which effectively lead to scoring 
under the assumption that an article was not pseudorep-
licated unless there was evidence to suggest otherwise.

Finally, we assessed whether individual reviewers were 
biased in their scoring for pseudoreplication using the 
proportion of articles they deemed to be pseudorepli-
cated; if the percentage of articles an individual reviewer 
deemed to be pseudoreplicated was above two standard 
deviations of the overall mean across all reviewers, a 
reviewer could be considered biased. We did not detect 
bias in our reviewing using this method.

It is important to note that our estimates on the preva-
lence of pseudoreplication apply only to articles which 
had the potential for being pseudoreplicated, i.e. articles 
which used inferential statistics in experiments whose 
design permitted repeat sampling from animal units. 
As articles which did not fit these criteria, such as those 
reporting only behavioural results or non-experimental 
articles such as reviews, were not considered, our find-
ings reflect that pseudoreplication is prevalent in the 
majority of articles which could be pseudoreplicated, 
rather than the majority of articles across the entire 
literature.

Conclusions
Our results here have shown that paying lip service to 
statistical reporting guidelines is not an adequate means 
of improving statistical rigour. Authors, journal editors 
and reviewers should be more vigilant about the valid-
ity and rigour of their statistical analyses, in addition to 
ensuring a high standard of statistical reporting. Effec-
tively tackling the lack of reproducibility and statistical 
rigour will require an open discussion on the inherent 
variability in biology, and a genuine embrace of negative 
results. As neuroscience is attempting to tackle some of 
the most complex questions in contemporary biology, a 
frank dialogue and an acute awareness of our statistical 

tools is our only means to discoveries that will stand the 
test of time.
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